Displacement Ventilation:

MASDeC October Meeting
Displacement Ventilation is Defined As:

Room Ventilation created by room air displacement, by introducing air at low level in a space at a lower air temperature than the room air.

Two Harbors High School Rendering, showing DV Diffusers at base of columns.
History

• Displacement Ventilation (DV) has been used in Scandinavia over the last 20 + years.
• Recently DV has become increasingly popular in the U.S.
• Originally DV was implemented for the welding industry.
• It has since been applied successfully to a variety of other types of spaces, including: Offices, Classrooms, Conference Rooms, Auditoriums, Gyms and Restaurants.
Mixing Ventilation

- This is the familiar air distribution method.
- Warm contaminated air migrates toward ceiling and mixes with incoming air.
- In heating mode, stagnant area is created in the occupied zone.
- Supply air temps may be anywhere from 55-90 deg F.
Air Temperature

- Displacement Vent.
 - Room temp. 72 deg F.
 - Air is supplied between 62-67 deg F.
 - Extraction or exhaust air is 75 degrees or greater.
 - Air temp increases from the floor to the ceiling as indicated by a straight line, theoretically.
Air Flow

• Displacement Ventilation
 • Heat sources (i.e. people computers) create heat plumes.
 • Stratification zones are created in the space.
 – Upper extraction air zone.
 – Lower occupied zone.
 • Contaminates are carried out of the occupied zone and exhausted from the space at or near the high point of the room.
 • To gain the proper air flow, diffuser selection and location is critical.
Diffuser Selection

- Displacement Ventilation uses air diffusers with a large outlet area to supply air at low velocities.
- Diffuser performance is important to help reduce draft.
- Diffuser specifically designed for DV should be selected in most cases.
- Coordination of diffuser locations.
- Floor and wall space will need to be coordinated.
Indoor Air Quality (IAQ)

- Due to convective (thermal) flows with DV, contaminants will flow to the upper zone, thus DV provides better IAQ.

- Impacts on IAQ.
 - Contaminant source.
 - Contaminant location
 - Human body convection.
 - Wall surface temperature.
 - Space Height.
Ventilation Effectiveness (VE)

- VE is the ability of air distribution system to remove internally generated pollutants.
- Due to the return/exhaust grilles being located in the upper zone the VE of DV systems will be much better than mixing systems.
- It is possible to lower total outside air requirements and still meet code.
- It is possible to allow the greater VE to improve ventilation and possibly improve human performance.

- Air change effectiveness is the ability to delivery ventilation air.
- Perfect mixing ventilation air change effectiveness equal 1.0.
- DV effectiveness has been tested to be 1.2 to 2.0, DV provides better effectiveness.
Thermal Comfort

- Heating must be provided by other means due to the low supply air temp.
 - Perimeter radiation or convection.
 - Floor heat
 - Ceiling panels

- Additional Cooling
 - Fan Coil units
 - Radiant Panels or Tubes.
 - Using DV, only, can result in very high airflow.
Energy Efficiency

• Lower air flow rates for the same air quality, equates to energy saving.
• DV has more potential for free cooling (economizer) and needs less cooling energy than mixing ventilation, in moderate climates.
Cost

- First costs may be less for the mechanical ductwork, due to fewer diffusers.
- First costs for general construction may be higher, due to chase considerations.
- Secondary heating system is required, but in mild climates, it will probably be needed or evaluated for need.
- System cooling plant size may be reduced due to higher discharge temperatures.

Cloquet High School Gymnasium.
Pros & Cons

Pros:
- Better Indoor Air Quality (IAQ).
- Energy savings, higher cooling supply air temps allows use of airside economizers more frequently.
- Lower air flow rates for the same or better air quality.
- Improved acoustics, due to lower velocity air flow.
- Lower pressure loss through low velocity diffusers.

Cons:
- Contractor unfamiliarity.
- Coordination of building features and diffuser locations.
- Larger quantities of air where higher cooling loads are needed.
- DV should not be used when contaminants are heavier than air.
- Higher ceilings are better for DV systems.
- Ceiling cooling panels may be needed to supplement air systems where cooling loads are high.
Bayfield School Cafeteria – custom perforated supply diffusers.
Cloquet High School – Gymnasium exterior wall chases for DV.
Displacement Ventilation – Mock Up at Price in Winnipeg.
Mock up smoke test with DV.
Smoke test at exterior wall with "students", warm floor cold ext. wall

I hope this isn't tobacco smoke.