

AMOUNT OF CONDENSATE Example: How much condensate will be produced by a 3,000 MBH at return water temperature of 104°F/40°C? =75 g/kWh x 984 kW =73,835 grams (73.8kg) =73.8 liter =19.5 usg Amount of condensate Flue gas temperature 19.5 usg/hr of condensate from boiler ℃ °F Boiler return water temperature Foil 5 April 2010 Ashrae Presentation

Components Tested	Drinking Water Limits	Wine	Condensate DIN-DVGW Test	•
	mg/ltr.	mg/ltr.	mg/ltr.	
Lead	0.04	0.1 - 0.3	< 0.01	Comparison of
Cadmium	0.005	0.001	< 0.005	condensate
Chrome	0.05	0.06 - 0.03	< 0.01	components
Copper	3.0*	0.5	< 0.01	
Nickel	0.05	0.05 - 0.03	< 0.01	
Mercury	0.001	0.00005	< 0.0001	
Vanadium	-	0.26 - 0.06	not determined	
Zinc	5.0*	3.5 - 0.5	< 0.05	
Tin	-	0.7 - 0.01	< 0.05	
Sulphate	240	5 - 10	4.6	
pH Value	6.5 - 9.5	3 - 4 (at 1.9 - 07 g/ltr. tartaric acid)	3.5 - 5 Without	Foil 6 April 2010

CONSTRUCTIVE AND PHYSICAL REQUIREMENTS FOR CONDENSING BOILERS

- Combustion with minimal excess air (high CO₂)
- Fully modulating burner
- Low heat exchanger surface temperatures
- Parallel flow of flue gas and condensate
- Counter-flow of flue gas and heating water
- Highly corrosion resistant material

Ashrae Presentation

SYSTEM DESIGN REQUIREMENTS FOR CONDENSING BOILERS

- Low temperature heat release surfaces
- Modulate water temperatures with outdoor reset controls
- Higher system water temperature drops
- Piping layouts to reduce boiler return water temperatures

Ashrae Presentation

Foil 12 April 2010

BENEFITS FROM USING CONDENSING BOILERS

- Lower energy costs
- Lower environmental impact
- Saves having to change boiler for emissions reasons
- Makes customer happy for these reasons
- Makes you look good too!

Ashrae Presentation

Foil 13 April 2010

CONDENSING BOILER TECHNOLOGY

Any Questions please?

Ted Schmelling Mulcahy Co.

E-mail: tschmelling@mulcahyco.com

climate of innovation

Ashrae Presentation

