Electric Valve Application

Refrigeration and Air Conditioning Systems

Tom Bourquin Product Manager - Electric Valves

ENGINEERING YOUR SUCCESS.

February 14, 2012

Mechanical Valve Fundamental Forces

Electric Valve Basics

- Electronically controlled
- Non refrigerant specific
- Wide load control capability
- Relatively few valves cover multiple applications and capacity
- "Tight" superheat control
- Direct temperature or pressure control capability
- Remote monitoring capability
- Not restricted by physics

Heat Motor Valve

- Legacy electric valve design
- Sensor reacts to refrigerant temperature
- Control modulates energy to valve heater
- Heater expands liquid and modulates valve
- Hysteresis and response issues

Modulating Solenoid Valve

- Magnetic field modulated to control valve position
 - Current or voltage modulation
- High hysteresis
- Repeatability concerns

Pulse Width Solenoid Valve

- Valve is either open (energized) or closed – no modulation
- Percent of time energized determines flow capacity
- Can cause "refrigerant hammer", stressing system components
 - Applicable for larger systems
- Can have longevity concerns

Stepper Motor Valves

- Controls in fine increments
- Each step is a small fraction of a revolution
- Excellent resolution and repeatability
 - Variation in step position is not cumulative
- Uni-polar and bi-polar motors
- Internal and external stators

Uni-polar step motors

- Permanent magnet rotors
- "Pull" control strategy
 - Only part of stator windings used for each step
- Lower torque output
 - Typically applied in smaller applications

		Phase			
Pulse	Steps Rotated	0 (Orange)	R (Red)	Y (Yellow)	B (Black)
1	1	Zero	HI	HI	HI
2	*2	Zero	Zero	HI	HI
3	3	HI	Zero	HI	HI
4	*4	HI	Zero	Zero	HI
5	5	HI	HI	Zero	HI
6	*6	HI	HI	Zero	Zero
7	7	HI	HI	HI	Zero
В	*8	Zero	HI	HI	Zero

Conceptual Model of Uni-polar step motor

Bi-polar step motors

- Permanent magnet rotors
- "Push-Pull" control strategy
- Higher torque output
 - Suitable for any size application

Conceptual Model of Bi-Polar Step Motor

External Stator Step Motor Construction

- Stator is "dry" (external)
 - Electrical connections are accessible
 - Stator is replaceable
- Rotor is "wet" (internal)
- Magnetic field must pass
 through large air gap to affect rotor
 - Reduces available power for a given amount of material
- Mounting is orientation dependent

Internal Stator Step Motor Construction

- Stator and rotor are both "wet" (internal)
 - Electrical connections must be made through a glass "feed-thru"
 - Actuator assembly and cable can be replaceable
- Air gap can be set to optimum dimension
 - Maximizes power for material
- Mounting can be independent of orientation

Typical Internal Stator Construction

Digital Linear Actuators

- Step motor rotation converted to linear motion via anti-rotation device
- Can utilize a gear train to magnify torque and linear force, and increase resolution

Significance of resolution

EEV POSITION (STEPS)

Electric Stepper Valve Control

Electric Stepper Valve Control

- Electronic control has embedded algorithm
 - Superheat, pressure, and/or temperature control
 - Standalone control or embedded in system hardware
- Sensors react to system temperature / pressure
- Control interprets data and modulates valve
- Process repeats continuously

TXV Pulldown and Superheat Control

EEV Pulldown and Superheat Control

TXV versus EEV Superheat Control

TXV versus EEV Superheat Control

22

TXV versus EEV Superheat Control

% Time Within Superheat Swing

Mechanical / Solenoid Subcooler Control

Mechanical / Solenoid Subcooler Control

25

EEV / Mechanical EPR Subcooler Control

EEV / Mechanical EPR Subcooler Control

PID Control Algorithm

- 3 control methods in one algorithm
 - Proportional responds to offset from setpoint
 - Integral responds to change in offset
 - Derivative responds to slope of adjustments

Impact of PID on System Control

Impact of PID on System Control

System Control Strategy

- Ideal system control involves integrating all component level controls
 - Allows for effective monitoring and eliminates
 "control confusion"
- Even without an integrated system control, considering potential control scheme conflicts is important

EEV Superheat Control – Suction Stop

EEV Valve Position – Suction Stop

Electric Valves – What's Next?

- Stepper motor valves have been utilized for over 20 years, but are still relatively immature compared to mechanical valves
 - Advances in electronic controls are accelerating implementation
- PID control is improving, and is trending toward more "self-tuning" style controls
- Creativity is becoming the limitation on system design

Thank you!